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Abstract

Single-nucleotide variant (SNV) is a single base mutation at a specific location in the genome and may play an import role
in epilepsy pathophysiology. The aim of this study was to review case—control studies that have investigated the relation-
ship between SNVs within microRNAs (miRs) sequences or in their target genes and epilepsy susceptibility from January
1, 2010 to October 31, 2020. Nine case—control studies were included in the present review. The mainly observed SNVs
associated with drug-resistant epilepsy (DRE) risk were SNVs n.60G > C (rs2910164) and n.-411A > G (rs57095329),
both located at miR-146a mature sequence and promoter region, respectively. In addition, the CC haplotype (rs987195-
rs969885) and the AA genotype at rs4817027 in the MIR155HG/miR-155 tagSNV were also genetic susceptibility markers
for early-onset epilepsy. MiR-146a has been observed as upregulated in human astrocytes in epileptogenesis and it regulates
inflammatory process through NF-xB signaling by targeting tumor necrosis factor-associated factor 6 (TRAF6) gene. The
SNVs 152910164 and rs57095329 may modify the expression level of mature miR-146a and the risk for epilepsy and SNVs
located at rs987195-rs969885 haplotype and at rs4817027 in the MIR155HG/miR-155 tagSNV could interfere in the miR-155
expression modulating inflammatory pathway genes involved in the development of early-onset epilepsy. In addition, SN'Vs
1662702, rs3208684, and rs35163679 at 3'untranslated region impairs the ability of miR-328, let-7b, and miR-200c bind-
ing affinity with paired box protein PAX-6 (PAX6), BCL2 like 1 (BCL2L1), and DNA methyltransferase 3 alpha (DNMT3A)
target genes. The SNV rs57095329 might be correlated with DRE when a larger number of patients are evaluated. Thus, we
concluded that the main drawback of most of studies is the small number of individuals enrolled, which lacks sample power.

Keywords Epilepsy - microRNAs (miRs) - Single-nucleotide variants (SNVs) - Susceptibility
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PAX-6 Paired box protein PAX-6

PCR Polymerase chain reaction

RISC RNA-induced silencing complex

RNA Ribonucleic acid

SNVs Single-nucleotide variants

SCNIA Sodium voltage-gated channel alpha subunit
1

SCN2A Sodium voltage-gated channel alpha subunit
2

SCNIB Sodium voltage-gated channel beta Subunit 1

TIE Temporal lobe epilepsy

TNF-a Tumor necrosis factor alpha

TRAF6 Tumor necrosis factor receptor (TNFR)-asso-
ciated actor 6

WHO World Health Organization

Introduction

Epilepsy is a chronic brain disorder defined by at least two
unprovoked seizures that occur within 24 h (Fisher et al.
2014). The disease affects about 50 million people world-
wide at all ages (WHO 2019). The seizures are divided into
focal, generalized, and unknown onset, according to the
International league against epilepsy (ILAE) classification
(Schefter et al. 2017). The focal seizure is more common
than generalized in children and adults (Beghi 2020), and
the temporal lobe epilepsy (TLE) is the most common focal
epilepsy subtype (Johnson 2019). In addition, TLE is the
most common type of drug-resistant epilepsy (DRE) (Asadi-
Pooya et al. 2017).

ILAE (Scheffer et al. 2017) has defined six etiologic
categories for epilepsy as (a) structural etiology, a finding
on neuroimaging reasonably inferred to cause the patient’s
seizures (Lapalme-Remis and Cascino 2016); (b) variant in
a gene or copy number variant, which is pathogenic for epi-
lepsy. The family history and typical features as electroen-
cephalography and seizure semiology might be sufficient for
genetic etiology (Hildebrand et al. 2013); (c) infectious etiol-
ogy for patients with epilepsy due to the neurocysticercosis,
human immunodeficiency virus, cytomegalovirus or cerebral
toxoplasmosis (Vezzani et al. 2016); (d) metabolic epilepsies
for patients with epilepsy due to a metabolic derangement
such as pyridoxine-dependent seizures and cerebral folate
deficiency (Parikh et al. 2015); (e) auto-immune diseases as
encephalitis, which has been linked to both neuronal intra-
cellular and neuronal cell surface antibodies (Toledrano and
Pittock 2015); (f) unknown etiology for patients whose etiol-
ogy remains unclear (Falco-Walter et al. 2018).

The genomic technology advances have greatly increased
the knowledge on the epilepsy basis and genetic changes.
Wang et al. (Wang et al. 2017) have evaluated the Online
Mendelian Inheritance in Man (OMIM) database and the

@ Springer

authors have found 84 epilepsy-related genes, being the
sodium voltage-gated channel alpha subunit 1A (SCNIA)
gene, the mainly observed one (Perucca and Perucca 2019).
The most common epilepsy genes were ion-channel genes
(SCNIA, SCNIB, SCN2A, others), totalizing 28 of the 84
epilepsy-related genes. Mutations in enzyme/enzyme-
modulator genes as alanyl-tRNA synthetase (AARS), alde-
hyde dehydrogenase 7 family member A1 (ALDH7A1), and
asparagine-linked glycosylation 13 (ALGI3) ranked as the
second cause (25/84 epilepsy-related genes). The remain-
ing genes were involved in transport, receptor binding, cell
adhesion, signal transduction/molecule, membrane traffick-
ing, cytoskeleton, nucleic acid binding, and other unknown
functions (Wang et al. 2017).

Recently, the role of microRNAS (miRs) in the epilepsy
pathophysiology have been also described as biomarkers and
novel therapy approaches for epilepsy (Ma 2018). Interest-
ingly, single-nucleotide variants (SNVs) in miRs sequences
or in their 3'untranslated region (3'-UTR) target genes might
influence the risk for epilepsy and expression on their target
genes, increasing diseases susceptibility, including epilepsy
(Tao et al. 2015; Li et al. 2016b; Panjwani et al. 2016; Xiao
et al. 2019; Boschiero et al. 2020). Thus, the aim of this
study was to review case—control studies, which investigated
the relationship between SNVs in miRs and in their target
genes and risk for epilepsy.

The Biogenesis of miRs

The biogenesis of miR begins in the cell nucleus, from
the transcription of DNA to pri-miR, by the action of the
enzymes PASHA and DROSHA. The pri-miR undergoes
action of the enzyme exportin-5 and it is exported to the cell
cytoplasm where it gives rise to the pre-miR. This is cata-
lyzed by another enzyme, Dicer, finally forming the mature
miR. Mature miR is associated with a complex or set of
enzymes called RNA-induced silencing complex (RISC)
and suppresses or inhibits protein synthesis by cleavage of
messenger RNAs (mRNAs) or by preventing translation of
mRNAs, inhibiting protein production (Hata and Kashima
2016).

SNVs in miRs and Epilepsy

MiRs, discovery in 1980 (Horvitz and Sulston 1980) and
subsequently existence confirmed in 2001 (Lee and Ambros
2001), ushered a new era in molecular biology. MiRs are
short non-coding regulatory RNAs with 19 to 25 nucleotides
(nt) in size, responsible for post-transcriptional silencing
regulating of their target genes expression (Lu and Roth-
enberg 2018). Base-pairing occurs between the miR and
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target gene, often within the 3’-UTR of the mRNA, result-
ing in recruitment of additional factors that lead to either
degradation of the mRNA or inhibition of translation (Krol
et al. 2010; Meister 2013). In mammals, 60% of the mRNAs
have a known seed sequence for miR-binding; thus, in the
brain, miRs are particularly abundant and control neuro-
genesis (Kosik 2006). In Dicer knockout mouse model, the
biogenesis of miR is blocked, leading to neuronal loss and
premature animal death (Schaefer et al. 2007).

Noteworthy, the majority of the known miRs are
expressed in the brain and many such as miR-124 has ele-
vated expression in the brain cells, but less detectable in
other tissues (Lagos-Quintana et al. 2002; Miska et al. 2004;
Shao et al. 2010; Ludwig et al. 2016). Furthermore, excita-
tory and inhibitory neurons, astrocytes, microglia, and oli-
godendrocytes express specific miRs (He et al. 2012; Jovicic
et al. 2013). In contrast, individual miRs loss can also be
sufficient to produce central nervous system phenotypes as
the loss of miR-9 that results in brain development defects
(Shibata et al. 2011), the loss of miR-124, which results in
hippocampus neurodegeneration (Sanuki et al. 2011), and
the postnatal deletion of miR-128 from dopaminergic neu-
rons results in epilepsy (Tan et al. 2013).

Recently, the role of miRs in the epilepsy pathophysiol-
ogy have been described on synaptic structure and function
(miR-134, miR-128, miR-203 and miR-139), neurogenesis
and neuronal migration (miR-134, miR-128, miR-124 and
miR-137), inflammation (miR-146 and miR-22), transcrip-
tion (miR-132, miR-124 and miR-199), and cell death (miR-
34a and miR-184) (Brennan and Henshall 2018).

The SN'Vs in miRs are examples of point mutations that
could affect miR function in three possible ways: altering
transcription of the primary miR transcript, processing
primary miR (pri-miR) and precursor miR (pre-miR), and
by their effects on the modulation of miR-mRNA interplay
(Saunders et al. 2007; Duan et al. 2007). Subsequently,
SNVs in miRs have been associated with several brain
pathogenesis like Parkinson’s disease, Alzheimer’s disease,
or other neurodegenerative diseases (Quinlan et al. 2017;
Wang et al. 2017; Dehghani et al. 2018) and might also
increase the risk for epilepsy (Manna et al. 2013). SNV is
a substitution of a single nucleotide that occurs at a spe-
cific position in the genome and the most common source
of genetic polymorphism in the human genome accounts
about 90% of all polymorphisms (Dabhi and Mistry 2014).

In the present review, only six case—control studies have
evaluated SNVs in miRs sequence and risk for epilepsy
(Table 1). The most evaluated SN'Vs associated with epi-
lepsy susceptibility were SNVs n.60G > C (rs2910164) and
n.-411A > G (rs57095329), both located at miR-146a mature
sequence and promoter region, respectively (Manna et al.
2013; Cui et al. 2015; Issac et al. 2015; Li et al. 2016b;

Boschiero et al. 2020). In addition, the CC haplotype
(rs987195-rs969885) and the AA genotype at rs4817027 in
the MIR155HG/miR-155 tagSNV were also genetic suscep-
tibility markers for early-onset epilepsy (Tao et al. 2015).

Neuroinflammatory signaling is partially controlled by
miR-146a and overexpression of miR-146a following status
epilepticus potently suppresses recurrent seizures in mice
models (Tori et al. 2017). In addition, miR-146a has been
observed to be upregulated in human epileptic astrocytes
(Lukiw et al. 2008) and it regulates inflammatory process
through the nuclear factor kappa B (NF-xB) signaling by
targeting tumor necrosis factor-associated factor 6 (TRAF6)
gene (Taganov et al. 2006; Hou et al. 2009). The SNVs
12910164 and rs57095329 in the miR-146a may alter the
expression level of the mature miR-146a (Zhou et al. 2014;
Boschiero et al. 2020) and the risk of epilepsy.

Only four studies have evaluated the association of epi-
lepsy risk and the SNV rs2910164 in the pre-miR-146a
(Manna et al. 2013; Cui et al. 2015; Issac et al. 2015; Boschi-
ero et al. 2020). (Manna et al. 2013) tested the rs2910164
and susceptibility to TLE in an Italian population cohort
and analysis comparing genotypes and alleles’ frequencies
in patients and controls showed no significant differences,
including clinical characteristics. (Cui et al. 2015) evaluated
the SNV 152910164 in Chinese TLE and non-TLE patients
and the authors found that the SNV rs2910164 was not asso-
ciated with epilepsy in both groups. (Issac et al. 2015) has
examine whether SNV 152910164 effected the proinflam-
matory cytokine, serum high-mobility group box 1 levels,
in Egyptian children presenting febrile seizures. The authors
discovered that rs2910164 polymorphism was not associated
with elevated risk of febrile seizures. However, higher high-
mobility group box 1 levels in rs2910164 CC compared to
GG genotype was observed. Finally, (Boschiero et al. 2020)
have observed an increased frequency of rs2910164 GC in
brain tissues from DRE patients with two times risk for epi-
lepsy. The Brazilian population is extremely mixed (dos San-
tos et al. 2013), which may explain the contrasting results.
Thus, the discrepancy among the studies might be due to
ethnic variation and differences in number of recruited
patients.

Only three groups (Cui et al. 2015; Li et al. 2016b;
Boschiero et al. 2020) have studied the SNV rs57095329
in patients with epilepsy. The study of (Cui et al. 2015)
described that the rs57095329 A allele was associated with a
reduced risk of seizures frequency in Chinese DRE patients.
In contrast, (Li et al. 2016b) observed in Chinese childhood
epilepsy patients that the G allele of rs57095329 could
increase drug-resistance risk and seizure severity, but no
genotype risk association was observed by authors. (Boschi-
ero et al. 2020) have included only DRE patients and, most
of the patients and controls were equally heterozygous for
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Table 1 (continued)

-@ 6N3 @ g ;N: @ uln’-? % Tg the SNV rs57095329 with no genotype risk association. Epi-
g :11] I :rr 2 E 3' ;I\ ; J» & lepsy is a multifactorial disorder in which genetic suscepti-
= S T R Q - é bility and environmental factors may be implicated; larger
2/ 5 § 5 E 5 a &} § E’ § 'z patients cohort are needed to confirm the possible clinical
o e o N E association of rs57095329.
» _ _ _ =2 Recently, it was investigated the association of SNVs
- § § g E rs2292832, rs11614913, and rs3746444 in the precursor
E % ﬁ ﬁ ﬁ g sequences of miR-149, miR-196a2, and miR-499, respec-
g % 8 = s % S % tively in neurodegenerative disorder as Parkinson (Haixia
g et al. 2012). Interestingly, the three miRs also modulate
4 2z genes related to inflammation pathways including tumor
& 0® 3 =) 9 2<% p o é Sue ¢ necrosis factor-a (TNF-a), toll-like receptor signaling, and
£ [SZE29332 233255, | £ cytokine response (Haixia etal. 2012). Li etal. (2016b) have
g 813'? %g B lal\, % é‘} gg é‘ g g é', % % s hypothesized that the SNVs 152292832, 1511614913, and
O © O ©O O O © O 0OO|AQ rs3746444 located at miRs precursor sequences may also
& z  contribute to childhood epilepsy risk. Thus, the authors have
% g g % genotyped the three SN'Vs in a hospital-based case—control
2 § § S S _Q;: studies in a Chinese population and no interrelation with
% % % g % LE = epilepsy risk was observed.
2= g Furthermore, the effect of the SNV g.9903189C/G
pal bl § % (rs531564) located at primary miR-124 on susceptibility
& g g g é to mesial temporal lobe epilepsy (MTLE), most common
g g g g & refractory epilepsy form, was investigated using a case con-
TE trol study in Italian population (Manna et al. 2016). The
- 5 3 g neuron-specific miR-124 have been showed to be essential
[% (/2 E 7\ = L/i § for neuronal differentiation (Makeyev et al. 2007). Recently,
g0 go 3o § miR-124 has been found to be upregulated in the acute and
h h b € chronic seizure stages of MTLE (Peng et al. 2013). There-
;; fore, (Manna et al. 2016) have determined whether SNV
& 15531564 could influence risk to MTLE patients. No statisti-
:E “ cally significant differences were found in the allele or geno-
> o & type distributions of the miR-124 rs531564 polymorphism
Z g 3 in patients and control groups evaluated.
& _'g 8 Above studies were the first and unique to evaluate SNVs
g : o 8 152292832, 1511614913, and rs3746444 in Chinese with epi-
gy % 3 g lepsy and the SNV rs531564 in Italian MTLE susceptibility,
28 g z E respectively. The findings need to be reproduced in a larger
<% 3 qi g patients’ cohort and other populations.
; E Both miR-146a and miR-155 are the most involved in the
; Fi inflammatory process of epilepsy. Recently, a positive asso-
% £ ciation between SNV 152910464 in the miR-146a and Brazil-
g g ian patients with DRE was evaluated by our team (Boschi-
€ £ ero et al. 2020). The first report that MIR155HG/miR-155
£ 'Z tag SNVs are related to DRE was provided by Tao and col-
_ % g laborators (Tao et al. 2015). MiR-155 is a transcription prod-
5 s g ‘g uct of its host gene, MIRI55HG, and its expression could
% g 2 be affected by polymorphisms located at both MIRI5S5SHG
ag: o § Sf and miR-155 genes in multiple sclerosis (Paraboschi et al.,
é Té & 2011). Thus, (Tao et al. 2015) have evaluated Chinese Han
. = & E DRE patients and healthy individuals for the 4 tag SNVs
§ 1 %ﬂ 2 15969885, rs12483428, rs987195, and rs4817027, located at
g £ E § MIR155HG/miR-155. Their study has showed that the CC
& s ] haplotype (rs987195-rs969885) is a genetic susceptibility
@ Springer
Journal : Large 10571 Article No : 1058 Pages : 14 MS Code : 1058 Dispatch : 26-2-2021 |

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302



303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Cellular and Molecular Neurobiology

marker for early-onset epilepsy. In addition, the authors have
found that the AA genotype (rs4817027) and the CC haplo-
type (rs987195-rs969885) were genetic susceptibility mark-
ers for DRE. On the contrary, the CG haplotype (rs987195-
rs969885) was a genetic protective factor against DRE. The
results are compatible with the inflammatory mechanism
of DRE.

In conclusion, most of the studies presented here were
unique and the findings need to be reproduced in a larger
patients’ cohort in different populations. In addition, the
GC and CC genotypes for SNV rs2910164 in miR-146a,
the CC haplotype (rs987195-rs969885) and the AA geno-
type at rs4817027 for MIR155HG/miR-155 tag SNV, were
genetic susceptibility markers for DRE or early-onset epi-
lepsy, confirming the role of both miR-146a and miR-155
with inflammation response in the pathogenesis of epilepsy.
MiR-146a is a NF-kB trans-activational target and nega-
tively regulates interleukin 1 receptor associated kinase 1
(IRAK1) and TRAF6, being identified as a powerful innate
immune and pro-inflammation regulator (Jazdzewski et al.
2008). The expression of miR-155, an inflammatory modu-
lator, is significantly increased in the brain in an immature
rat model of status epilepticus and in children with MTLE
(Ashhab et al. 2013), suggesting that the inflammatory role
of miR-155 is involved in the development of early-onset
epilepsy.

In fact, an increasing amount of evidence has supported
the hypothesis that inflammatory processes within the epi-
leptic brain might constitute a common and crucial mecha-
nism in the pathology of seizures (Vezzani 2014). Brain
injury leads to the activation of the microglial cells, which
increases the release of proinflammatory cytokines as inter-
leukin (IL)-1, interferon-gamma (IFN-y), and TNF-a, which
further activate the NF- kB mediated pathway. At the same
time, there is also a damage to the gamma-aminobutyric
acid (GABA) GABAergic neurons in the brain, which leads
to a relative increase in the excitatory transmitter like glu-
tamate. Increased activation of the glutamate receptor lead
to increase in the oxidative stress that ultimately activates
the NF- kB through proinflammatory pathway (Singh et al.
2018). As a consequence of this action, N-methyl-D-aspar-
tate (NMDA) receptor-mediated Ca’* influx into neurons is
enhanced by IL-1, and this effect plays a role in promoting
excitotoxicity and seizure generation (Viviani et al. 2003;
Balosso et al. 2008). Lubin and collaborators (Lubin et al.
2007) have found that inhibition of NF-kB significantly
decreased seizure threshold in treated rats suggesting that
NF-kB activation is neuroprotective following a variety of
brain insults and neurodegenerative conditions, supporting
the proposal that proinflammatory cytokines and the NF-xB
pathway have a role in the pathogenesis of status epilepticus
development (Zhang et al. 2018).

@ Springer

As previously commented, SNVs in miRs related to
epilepsy might affect the levels of proteins associated with
the disorder. However, most of the studies did not involve
additional experiments to assess the miRs and its predicted
targets expression, once obtaining tissue samples of epilep-
togenic foci is difficult. Thus, only (Boschiero et al. 2020)
have evaluated the miR-146a expression level in the epilep-
togenic tissues, considering the different genotypes for the
SNV r52910164. The authors have observed lower miR-146a
expression in the GC and CC genotypes compared to GG
genotype. Also, TRAF6 gene expression level was higher in
GC and CC than in GG genotype.

SNVs in miRs Target Genes

The miR: mRNA pairing consequence is a protein expres-
sion loss, resulting from either decreased transcript lev-
els or translational repression (Winter et al. 2009). Many
mRNAs contain conserved miR target sites in their 3'-UTR.
The average size of human highly expressed neuronal genes
is 1300 nt, whereas for genes specific to non-neuronal tis-
sue it is 700 nt (Lewis et al. 2005; Sood et al. 2006), while
the efficient miR-binding site consists of 6—8 nt. The com-
position of specific miRs associated with the 3'-UTR of a
mRNA along with the efficiency of miR pairing to their tar-
get sequences impacts the mRNA'’s half-life and influences
protein levels (Filipowicz et al. 2008; Bartel 2009) Consider-
ing the complexity of miRNA: mRNA pairing, the introduc-
tion of a SNV into a 3’-UTR can introducing or removing
miR target sequences or changing the binding efficiency. In
addition, the introduction or removal of miR target sites may
affect binding to other miR target sequences in the SNV’s
close proximity, which could have unpredicted effects on
the mRNA half-life.

There are only 3 studies that have observed SNVs in the
3'-UTR of miRs target genes in epilepsy (Table 2). One
study has observed that the SNV rs662702 of miRNA-328
binding site in the 3'-UTR of paired box protein PAX-6
(PAX6), which is known to result in increased PAX6 expres-
sion, conferred the increased risk of centrotemporal spikes
of Rolandic epilepsy (Panjwani et al. 2016).

Also, Li et al. (2016a) have investigated if genetic vari-
ants in 3'-UTR of SCNIA, affecting the miR-mRNA 3’-UTR
interaction and SCNIA gene repression, potentially asso-
ciated with epilepsy. The authors identified twelve vari-
ants, NM_001202435.1:n.6277A > G, n.6568_6571del,
n.6761C>T, n.6874A > T, n.6907 T>C, n.6978A > G,
n.7065_7066insG, n.7282 T > C, n.7338_7344del,
n.7385 T> A, n.7996 C>T, and n.8212C>T in 3’-UTR of
SCNIA gene. The authors have observed that the genotype
distribution of n.7282 T > C was significantly different in
the male group, being the homozygous variant (CC) and
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heterozygous (CT) much less frequent in male patients than
in male controls (Table 2). Other two variants, n.7996C > T
and n.8212C > T did not significantly distribute genotypes
differently between cases and controls. In female subset,
three variants were distributed relatively even in the patient
and control group, n.7282 T>C, n.7996 C>T, and n.8212
C>T (Table 2). The genetic variant n.6978 A > G was fully
deviated (variant GG, 100%) from that of the homozy-
gous genotype (AA). The homozygous variants genotypes
frequencies of n.6277 A> G, n.6568_6571del, n.6761
C>T, n.6874 A>T, n.6907 T>C, n.7065_7066insG,
n.7338_7344del, and n.7385 T> A were quite low, one
or two cases in some gender group (male group or female
group).

More recently, (Xiao et al. 2019) have experimentally
confirmed that SNV 153208684 A >C in 3'-UTR of BCL2
like 1 (BCL2L1I) impairs the ability of let-7b binding affin-
ity with BCL2L1. Previous study have demonstrated that
BCL2L1, an anti-apoptotic member of the Bcl-2 family, it
was found to be overexpressed in human TLE, conferring a
survival property to neural cells (Henshall et al. 2000). In
addition, it was reported that let-7b could act as a key regula-
tor in the intrinsic apoptotic pathway by targeting BCL2LI
(Yan et al. 2017), since it was also verified previously that
Let-7b is downregulated in TLE (McKiernan et al. 2012).

Using Luciferase report assays, Xiao and colleagues
(Xiao et al. 2019) have demonstrated that miR-200c targeted
3'-UTR of the DNA methyltransferase 3 alpha (DNMT3A)
gene expression and the SNV rs35163679, within the miR-
200c binding site, influenced the ability of miR-200c binding
affinity with DNMT3A. Previously, it was reported increased
DNMT3A expression in patients with intractable TLE (Zhu
et al. 2012). DNMT3A is a member of the DNA methyltrans-
ferase enzyme family, which promotes de novo methylation
during development and regulate synaptic function in mature
central nervous system neurons (Feng et al. 2010).

In conclusion, SNVs in the 3'-UTR of miRs target genes
may be potential molecular pathological mechanisms of
TLE and therapeutic targets; however, case—control studies
including different ethnic populations need to be performed
to confirm the results.

The SNV n.-411A > G (rs57095329)
in miR-146a as a Risk Factor for DRE

As pointed out before, most of the studies were unique
and the findings need to be reproduced in a larger patients’
cohort in different populations. However, after a literature
review, three similar studies for SNV rs57095329 at miR-
146a was identified in DRE patients (Cui et al. 2015; Li
et al. 2016b; Boschiero et al. 2020). In this context, we input
all data for the SNV rs57095329 in a dataset, aiming first

to compare the results and then, to have a better design to
identify an association between SNV rs57095329 and DRE.
Thus, we performed one subgroup data including all Chi-
nese and Brazilian DRE patients versus healthy Chinese and
Brazilian individuals.

The comparative association of the SNV rs57095329
in patients with DRE and controls groups are showed in
Table 3. The percentage of different genotypes individually
for the evaluated SNV was similar in the two Chinese stud-
ies; however, it was different for Brazilian patients (Boschi-
ero et al. 2020).

Interestingly, after the association between Chinese
and Brazilian samples, it was observed significantly gen-
otype differences between patient and control groups.
Thus, increased frequency of AA genotype was observed
in patients compared to controls [55.98% versus (vs.)
41.60%, p-value <0.01] with 1.78 [95% confidential inter-
val (CI)=1.43-2.22] risk for DRE (Table 3). The A allele
presented significantly risk for the disease compared to G
allele (68.37% vs. 61.34%, p-value <0.01) with an Odds
ratio (OD) of 1.36 (95%CI=1.13-1.65).

Our results highlighted that the SNV rs57095329 might
be correlated with DRE when a larger number of patients
are evaluated. Thus, we concluded that the main drawback of
most of studies is the small number of individuals enrolled,
which lacks sample power. Epilepsy is a multifactorial disor-
der in which genetic susceptibility and environmental factors
may be implicated; larger cohort from different countries
including patients with DRE and patients’ drug-responsive-
ness are needed to confirm the possible association of SNV
rs57095329.

Conclusions

e The most evaluated SNVs associated with DRE risk
were SNVs n.60G > C (rs2910164) and n.-411A>G
(rs57095329), both located at miR-146a mature
sequence and promoter region, respectively.

e MiR-146a has been identified to be involved in the
upregulation of inflammatory responses in human
astrocytes in epileptogenesis through NF-kB signal-
ing by targeting TRAF6 gene and miR-155 has been
reported as inflammatory pathway genes modulator in
early-onset epilepsy development.

e The CC haplotype (rs987195-rs969885) and the AA gen-
otype at rs4817027 in the MIR155HG/miR-155 tag SNV
were associated with early-onset epilepsy.

o SNVsrs662702, rs3208684, and rs35163679 at 3'-UTR
impairs the ability of miR-328, let-7b, and miR-200c
binding affinity with PAX6, BCL2LI, and DNMT3A tar-
get genes, indicating that SN'Vs in 3'-UTR of target genes
may be potential molecular pathological mechanisms of
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Table 2 Association between single-nucleotide variants (SNVs) in the 3'untranslated region (UTR) of microRNAs (miRs) target genes and epi-

lepsy
References Population Methods SNVs 3'-UTR miRs Putative risk OR (95%IC)
genes alleles
Panjwani et al. US, Canada, Control vs. 1s662702 C>T PAX6 miR-328 CC/CT/TT 12.29 (3.20-7.22)
(2016) Argentina, Rolandic epi- Pp=2.6x 1074
France and the lepsy
UK
Lietal. (2016a)  China Control vs. epi-  n.6277A>G SCNIA - - -
leptic patients
n.6568_6571del SCNIA - - -
n.6761C>T SCNIA - - -
n.6874A>T SCNIA - - -
n.6907 T>C SCNIA - - -
n.6978A>G SCNIA - - -
n.7065_7066insG SCNIA - - -
n.7282T>C SCNIA - TT/CC+CT 0.42 (1.61-0.11)
(@ <0.05) 1.50 (0.36-1.17)
(Male patient)
TT/CT/TT
(p>0.05)
(Female
patient)
n.7338_7344del SCNIA - - -
n.7385 T>A SCNIA - - -
n.7996 C>T SCNIA - CC+CT/TT 0.875 (0.89-0.62)
(»>0.05) 0.91 (0.86-0.68)
CC/CT/TT
(»>0.05)
(Female
patient)
n.8212C>T SCNIA - CC/ICT+TT 0.77 (1.12-0.60)
(»>0.05) 1.03 (0.94-1.01)
CC/CT/TT
(»>0.05)
(Female
patient)
Xiao et al. (2019) — Luciferase report  rs3208684 A>C BCL2LI let-7b - -
assay
Luciferase report  rs35163679 DNMT3A miR-200c — -

assay

SNVs single-nucleotide variants, 3-UTR 3'untranslated region, vs. versus, OR odds ratio with 95% confidence intervals, US United States of
America, UK United Kingdom, miRs microRNAS, DNMT3A DNA methyltransferase 3 alpha, PAX6 paired box protein PAX-6, BCL2L1 BCL2
like 1, SCNIA sodium voltage-gated channel alpha subunit 1

TLE; however, case—control studies including different

ethnic populations need to be performed.

e SNV 1557095329 might be correlated with DRE when a
larger number of patients are evaluated. Thus, we con-

@ Springer

cluded that the main drawback of most of studies is the
small number of individuals enrolled, which lacks sample
power.
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Table 3 Comparative association of the single-nucleotide variant n.-411A > G (rs57095329) in miR-146A in patients with drug-resistant epilepsy
and health control groups

Genotypes Patients n (%) A Controls n (%) A Odds ratio (95%CI)
Additive (AA vs. Dominant Recessive (AA + GA vs. GG)
GA vs. GG) (GA+GG vs. AA)
AA 0 (0.00) 52.14) NA NA Reference
GA 58 (95.08) 221 (94.44) NA NA Reference
GG 3(4.92) 8 (3.42) NA NA 1.46 (0.242-6.33)
p-value by model 0.597" 0.587" 0.703"
Genotypes Patients n (%) B Controls n (%) B Additive Dominant Recessive
AA 160 (59.93) 152 (56.93) NA 1.13 (0.80-1.60) Reference
GA 89 (33.33) 76 (28.46) NA Reference Reference
GG 18 (6.74)* 39 (14.61) NA Reference 0.42 (0.24-0.76)
p-value by model <0.01™ 0.482"" (0.405%) 0.003"" (0.087%)
Genotypes Patients n (%) C Controls n (%) C Additive Dominant Recessive
AA 163 (65.46) 155 (62.25) NA 1.15 (0.80-1.66) Reference
GA 79 (31.73) 86 (34.54) NA Reference Reference
GG 7 (2.81) 8(3.21) NA Reference 0.87 (0.31-2.44)
p-value by model 0.754™ 0.456™ 0.793™
Genotypes Patients n (%)—Total Controls n (%)—Total Additive Dominant Recessive
AA 323 (55.98)° 312 (41.60) NA 1.79 (1.43-2.22) Reference
GA 226 (39.17) 383 (51.07) NA Reference Reference
GG 28 (4.85) 55(7.33) NA Reference 0.65 (0.40-1.03)
p-value by model <0.01™ <0.01™ 0.068™"
Allele Patients n (%)—Total Controls n (%)—Total Allelic analysis
A 323 (68.37) 695 (61.34) 1.36 (1.13-1.65)
G 254 (31.63) 438 (38.66) Reference
p-value <0.01™

*Fisher’s test

**Chi-square

# Adjusted odds ratio based on age and sex. OR odds ratio, 95%CI 95% confidence interval, NA not applicable

ABoschiero et al. 2020
BLjetal. 2016a, b
CCui et al. 2015
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