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Abstract
Single-nucleotide variant (SNV) is a single base mutation at a specific location in the genome and may play an import role 
in epilepsy pathophysiology. The aim of this study was to review case–control studies that have investigated the relation-
ship between SNVs within microRNAs (miRs) sequences or in their target genes and epilepsy susceptibility from January 
1, 2010 to October 31, 2020. Nine case–control studies were included in the present review. The mainly observed SNVs 
associated with drug-resistant epilepsy (DRE) risk were SNVs n.60G > C (rs2910164) and n.-411A > G (rs57095329), 
both located at miR-146a mature sequence and promoter region, respectively. In addition, the CC haplotype (rs987195-
rs969885) and the AA genotype at rs4817027 in the MIR155HG/miR-155 tagSNV were also genetic susceptibility markers 
for early-onset epilepsy. MiR-146a has been observed as upregulated in human astrocytes in epileptogenesis and it regulates 
inflammatory process through NF-κB signaling by targeting tumor necrosis factor-associated factor 6 (TRAF6) gene. The 
SNVs rs2910164 and rs57095329 may modify the expression level of mature miR-146a and the risk for epilepsy and SNVs 
located at rs987195-rs969885 haplotype and at rs4817027 in the MIR155HG/miR-155 tagSNV could interfere in the miR-155 
expression modulating inflammatory pathway genes involved in the development of early-onset epilepsy. In addition, SNVs 
rs662702, rs3208684, and rs35163679 at 3′untranslated region impairs the ability of miR-328, let-7b, and miR-200c bind-
ing affinity with paired box protein PAX-6 (PAX6), BCL2 like 1 (BCL2L1), and DNA methyltransferase 3 alpha (DNMT3A) 
target genes. The SNV rs57095329 might be correlated with DRE when a larger number of patients are evaluated. Thus, we 
concluded that the main drawback of most of studies is the small number of individuals enrolled, which lacks sample power.
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Introduction

Epilepsy is a chronic brain disorder defined by at least two 
unprovoked seizures that occur within 24 h (Fisher et al. 
2014). The disease affects about 50 million people world-
wide at all ages (WHO 2019). The seizures are divided into 
focal, generalized, and unknown onset, according to the 
International league against epilepsy (ILAE) classification 
(Scheffer et al. 2017). The focal seizure is more common 
than generalized in children and adults (Beghi 2020), and 
the temporal lobe epilepsy (TLE) is the most common focal 
epilepsy subtype (Johnson 2019). In addition, TLE is the 
most common type of drug-resistant epilepsy (DRE) (Asadi-
Pooya et al. 2017).

ILAE (Scheffer et al. 2017) has defined six etiologic 
categories for epilepsy as (a) structural etiology, a finding 
on neuroimaging reasonably inferred to cause the patient’s 
seizures (Lapalme-Remis and Cascino 2016); (b) variant in 
a gene or copy number variant, which is pathogenic for epi-
lepsy. The family history and typical features as electroen-
cephalography and seizure semiology might be sufficient for 
genetic etiology (Hildebrand et al. 2013); (c) infectious etiol-
ogy for patients with epilepsy due to the neurocysticercosis, 
human immunodeficiency virus, cytomegalovirus or cerebral 
toxoplasmosis (Vezzani et al. 2016); (d) metabolic epilepsies 
for patients with epilepsy due to a metabolic derangement 
such as pyridoxine-dependent seizures and cerebral folate 
deficiency (Parikh et al. 2015); (e) auto-immune diseases as 
encephalitis, which has been linked to both neuronal intra-
cellular and neuronal cell surface antibodies (Toledrano and 
Pittock 2015); (f) unknown etiology for patients whose etiol-
ogy remains unclear (Falco-Walter et al. 2018).

The genomic technology advances have greatly increased 
the knowledge on the epilepsy basis and genetic changes. 
Wang et al. (Wang et al. 2017) have evaluated the Online 
Mendelian Inheritance in Man (OMIM) database and the 

authors have found 84 epilepsy-related genes, being the 
sodium voltage-gated channel alpha subunit 1A (SCN1A) 
gene, the mainly observed one (Perucca and Perucca 2019). 
The most common epilepsy genes were ion-channel genes 
(SCN1A, SCN1B, SCN2A, others), totalizing 28 of the 84 
epilepsy-related genes. Mutations in enzyme/enzyme-
modulator genes as alanyl-tRNA synthetase (AARS), alde-
hyde dehydrogenase 7 family member A1 (ALDH7A1), and 
asparagine-linked glycosylation 13 (ALG13) ranked as the 
second cause (25/84 epilepsy-related genes). The remain-
ing genes were involved in transport, receptor binding, cell 
adhesion, signal transduction/molecule, membrane traffick-
ing, cytoskeleton, nucleic acid binding, and other unknown 
functions (Wang et al. 2017).

Recently, the role of microRNAS (miRs) in the epilepsy 
pathophysiology have been also described as biomarkers and 
novel therapy approaches for epilepsy (Ma 2018). Interest-
ingly, single-nucleotide variants (SNVs) in miRs sequences 
or in their 3′untranslated region (3′-UTR) target genes might 
influence the risk for epilepsy and expression on their target 
genes, increasing diseases susceptibility, including epilepsy 
(Tao et al. 2015; Li et al. 2016b; Panjwani et al. 2016; Xiao 
et al. 2019; Boschiero et al. 2020). Thus, the aim of this 
study was to review case–control studies, which investigated 
the relationship between SNVs in miRs and in their target 
genes and risk for epilepsy.

The Biogenesis of miRs

The biogenesis of miR begins in the cell nucleus, from 
the transcription of DNA to pri-miR, by the action of the 
enzymes PASHA and DROSHA. The pri-miR undergoes 
action of the enzyme exportin-5 and it is exported to the cell 
cytoplasm where it gives rise to the pre-miR. This is cata-
lyzed by another enzyme, Dicer, finally forming the mature 
miR. Mature miR is associated with a complex or set of 
enzymes called RNA-induced silencing complex (RISC) 
and suppresses or inhibits protein synthesis by cleavage of 
messenger RNAs (mRNAs) or by preventing translation of 
mRNAs, inhibiting protein production (Hata and Kashima 
2016).

SNVs in miRs and Epilepsy

MiRs, discovery in 1980 (Horvitz and Sulston 1980) and 
subsequently existence confirmed in 2001 (Lee and Ambros 
2001), ushered a new era in molecular biology. MiRs are 
short non-coding regulatory RNAs with 19 to 25 nucleotides 
(nt) in size, responsible for post-transcriptional silencing 
regulating of their target genes expression (Lu and Roth-
enberg 2018). Base-pairing occurs between the miR and 
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target gene, often within the 3′-UTR of the mRNA, result-
ing in recruitment of additional factors that lead to either 
degradation of the mRNA or inhibition of translation (Krol 
et al. 2010; Meister 2013). In mammals, 60% of the mRNAs 
have a known seed sequence for miR-binding; thus, in the 
brain, miRs are particularly abundant and control neuro-
genesis (Kosik 2006). In Dicer knockout mouse model, the 
biogenesis of miR is blocked, leading to neuronal loss and 
premature animal death (Schaefer et al. 2007).

Noteworthy, the majority of the known miRs are 
expressed in the brain and many such as miR-124 has ele-
vated expression in the brain cells, but less detectable in 
other tissues (Lagos‐Quintana et al. 2002; Miska et al. 2004; 
Shao et al. 2010; Ludwig et al. 2016). Furthermore, excita-
tory and inhibitory neurons, astrocytes, microglia, and oli-
godendrocytes express specific miRs (He et al. 2012; Jovicic 
et al. 2013). In contrast, individual miRs loss can also be 
sufficient to produce central nervous system phenotypes as 
the loss of miR-9 that results in brain development defects 
(Shibata et al. 2011), the loss of miR-124, which results in 
hippocampus neurodegeneration (Sanuki et al. 2011), and 
the postnatal deletion of miR‐128 from dopaminergic neu-
rons results in epilepsy (Tan et al. 2013).

Recently, the role of miRs in the epilepsy pathophysiol-
ogy have been described on synaptic structure and function 
(miR-134, miR-128, miR-203 and miR-139), neurogenesis 
and neuronal migration (miR-134, miR-128, miR-124 and 
miR-137), inflammation (miR-146 and miR-22), transcrip-
tion (miR-132, miR-124 and miR-199), and cell death (miR-
34a and miR-184) (Brennan and Henshall 2018).

The SNVs in miRs are examples of point mutations that 
could affect miR function in three possible ways: altering 
transcription of the primary miR transcript, processing 
primary miR (pri-miR) and precursor miR (pre-miR), and 
by their effects on the modulation of miR-mRNA interplay 
(Saunders et al. 2007; Duan et al. 2007). Subsequently, 
SNVs in miRs have been associated with several brain 
pathogenesis like Parkinson’s disease, Alzheimer’s disease, 
or other neurodegenerative diseases (Quinlan et al. 2017; 
Wang et al. 2017; Dehghani et al. 2018) and might also 
increase the risk for epilepsy (Manna et al. 2013). SNV is 
a substitution of a single nucleotide that occurs at a spe-
cific position in the genome and the most common source 
of genetic polymorphism in the human genome accounts 
about 90% of all polymorphisms (Dabhi and Mistry 2014).

In the present review, only six case–control studies have 
evaluated SNVs in miRs sequence and risk for epilepsy 
(Table 1). The most evaluated SNVs associated with epi-
lepsy susceptibility were SNVs n.60G > C (rs2910164) and 
n.-411A > G (rs57095329), both located at miR-146a mature 
sequence and promoter region, respectively (Manna et al. 
2013; Cui et al. 2015; Issac et al. 2015; Li et al. 2016b; 

Boschiero et  al. 2020). In addition, the CC haplotype 
(rs987195-rs969885) and the AA genotype at rs4817027 in 
the MIR155HG/miR-155 tagSNV were also genetic suscep-
tibility markers for early-onset epilepsy (Tao et al. 2015).

Neuroinflammatory signaling is partially controlled by 
miR-146a and overexpression of miR-146a following status 
epilepticus potently suppresses recurrent seizures in mice 
models (Iori et al. 2017). In addition, miR-146a has been 
observed to be upregulated in human epileptic astrocytes 
(Lukiw et al. 2008) and it regulates inflammatory process 
through the nuclear factor kappa B (NF-κB) signaling by 
targeting tumor necrosis factor-associated factor 6 (TRAF6) 
gene (Taganov et al. 2006; Hou et al. 2009). The SNVs 
rs2910164 and rs57095329 in the miR-146a may alter the 
expression level of the mature miR-146a (Zhou et al. 2014; 
Boschiero et al. 2020) and the risk of epilepsy.

Only four studies have evaluated the association of epi-
lepsy risk and the SNV rs2910164 in the pre-miR-146a 
(Manna et al. 2013; Cui et al. 2015; Issac et al. 2015; Boschi-
ero et al. 2020). (Manna et al. 2013) tested the rs2910164 
and susceptibility to TLE in an Italian population cohort 
and analysis comparing genotypes and alleles’ frequencies 
in patients and controls showed no significant differences, 
including clinical characteristics. (Cui et al. 2015) evaluated 
the SNV rs2910164 in Chinese TLE and non-TLE patients 
and the authors found that the SNV rs2910164 was not asso-
ciated with epilepsy in both groups. (Issac et al. 2015) has 
examine whether SNV rs2910164 effected the proinflam-
matory cytokine, serum high-mobility group box 1 levels, 
in Egyptian children presenting febrile seizures. The authors 
discovered that rs2910164 polymorphism was not associated 
with elevated risk of febrile seizures. However, higher high-
mobility group box 1 levels in rs2910164 CC compared to 
GG genotype was observed. Finally, (Boschiero et al. 2020) 
have observed an increased frequency of rs2910164 GC in 
brain tissues from DRE patients with two times risk for epi-
lepsy. The Brazilian population is extremely mixed (dos San-
tos et al. 2013), which may explain the contrasting results. 
Thus, the discrepancy among the studies might be due to 
ethnic variation and differences in number of recruited 
patients.

Only three groups (Cui et  al. 2015; Li et  al. 2016b; 
Boschiero et al. 2020) have studied the SNV rs57095329 
in patients with epilepsy. The study of (Cui et al. 2015) 
described that the rs57095329 A allele was associated with a 
reduced risk of seizures frequency in Chinese DRE patients. 
In contrast, (Li et al. 2016b) observed in Chinese childhood 
epilepsy patients that the G allele of rs57095329 could 
increase drug-resistance risk and seizure severity, but no 
genotype risk association was observed by authors. (Boschi-
ero et al. 2020) have included only DRE patients and, most 
of the patients and controls were equally heterozygous for 
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the SNV rs57095329 with no genotype risk association. Epi-
lepsy is a multifactorial disorder in which genetic suscepti-
bility and environmental factors may be implicated; larger 
patients cohort are needed to confirm the possible clinical 
association of rs57095329.

Recently, it was investigated the association of SNVs 
rs2292832, rs11614913, and rs3746444 in the precursor 
sequences of miR-149, miR-196a2, and miR-499, respec-
tively in neurodegenerative disorder as Parkinson (Haixia 
et al. 2012). Interestingly, the three miRs also modulate 
genes related to inflammation pathways including tumor 
necrosis factor-α (TNF-α), toll-like receptor signaling, and 
cytokine response (Haixia et al. 2012). Li et al. (2016b) have 
hypothesized that the SNVs rs2292832, rs11614913, and 
rs3746444 located at miRs precursor sequences may also 
contribute to childhood epilepsy risk. Thus, the authors have 
genotyped the three SNVs in a hospital-based case–control 
studies in a Chinese population and no interrelation with 
epilepsy risk was observed.

Furthermore, the effect of the SNV g.9903189C/G 
(rs531564) located at primary miR-124 on susceptibility 
to mesial temporal lobe epilepsy (MTLE), most common 
refractory epilepsy form, was investigated using a case con-
trol study in Italian population (Manna et al. 2016). The 
neuron-specific miR-124 have been showed to be essential 
for neuronal differentiation (Makeyev et al. 2007). Recently, 
miR-124 has been found to be upregulated in the acute and 
chronic seizure stages of MTLE (Peng et al. 2013). There-
fore, (Manna et al. 2016) have determined whether SNV 
rs531564 could influence risk to MTLE patients. No statisti-
cally significant differences were found in the allele or geno-
type distributions of the miR-124 rs531564 polymorphism 
in patients and control groups evaluated.

Above studies were the first and unique to evaluate SNVs 
rs2292832, rs11614913, and rs3746444 in Chinese with epi-
lepsy and the SNV rs531564 in Italian MTLE susceptibility, 
respectively. The findings need to be reproduced in a larger 
patients’ cohort and other populations.

Both miR-146a and miR-155 are the most involved in the 
inflammatory process of epilepsy. Recently, a positive asso-
ciation between SNV rs2910464 in the miR-146a and Brazil-
ian patients with DRE was evaluated by our team (Boschi-
ero et al. 2020). The first report that MIR155HG/miR-155 
tag SNVs are related to DRE was provided by Tao and col-
laborators (Tao et al. 2015). MiR-155 is a transcription prod-
uct of its host gene, MIR155HG, and its expression could 
be affected by polymorphisms located at both MIR155HG 
and miR-155 genes in multiple sclerosis (Paraboschi et al., 
2011). Thus, (Tao et al. 2015) have evaluated Chinese Han 
DRE patients and healthy individuals for the 4 tag SNVs 
rs969885, rs12483428, rs987195, and rs4817027, located at 
MIR155HG/miR-155. Their study has showed that the CC 
haplotype (rs987195-rs969885) is a genetic susceptibility Ta
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marker for early-onset epilepsy. In addition, the authors have 
found that the AA genotype (rs4817027) and the CC haplo-
type (rs987195-rs969885) were genetic susceptibility mark-
ers for DRE. On the contrary, the CG haplotype (rs987195-
rs969885) was a genetic protective factor against DRE. The 
results are compatible with the inflammatory mechanism 
of DRE.

In conclusion, most of the studies presented here were 
unique and the findings need to be reproduced in a larger 
patients’ cohort in different populations. In addition, the 
GC and CC genotypes for SNV rs2910164 in miR-146a, 
the CC haplotype (rs987195-rs969885) and the AA geno-
type at rs4817027 for MIR155HG/miR-155 tag SNV, were 
genetic susceptibility markers for DRE or early-onset epi-
lepsy, confirming the role of both miR-146a and miR-155 
with inflammation response in the pathogenesis of epilepsy. 
MiR-146a is a NF-κB trans-activational target and nega-
tively regulates interleukin 1 receptor associated kinase 1 
(IRAK1) and TRAF6, being identified as a powerful innate 
immune and pro-inflammation regulator (Jazdzewski et al. 
2008). The expression of miR-155, an inflammatory modu-
lator, is significantly increased in the brain in an immature 
rat model of status epilepticus and in children with MTLE 
(Ashhab et al. 2013), suggesting that the inflammatory role 
of miR-155 is involved in the development of early-onset 
epilepsy.

In fact, an increasing amount of evidence has supported 
the hypothesis that inflammatory processes within the epi-
leptic brain might constitute a common and crucial mecha-
nism in the pathology of seizures (Vezzani 2014). Brain 
injury leads to the activation of the microglial cells, which 
increases the release of proinflammatory cytokines as inter-
leukin (IL)-1, interferon-gamma (IFN-γ), and TNF-α, which 
further activate the NF- kB mediated pathway. At the same 
time, there is also a damage to the gamma-aminobutyric 
acid (GABA) GABAergic neurons in the brain, which leads 
to a relative increase in the excitatory transmitter like glu-
tamate. Increased activation of the glutamate receptor lead 
to increase in the oxidative stress that ultimately activates 
the NF- kB through proinflammatory pathway (Singh et al. 
2018). As a consequence of this action, N-methyl-D-aspar-
tate (NMDA) receptor-mediated  Ca2+  influx into neurons is 
enhanced by IL-1, and this effect plays a role in promoting 
excitotoxicity and seizure generation (Viviani et al. 2003; 
Balosso et al. 2008). Lubin and collaborators (Lubin et al. 
2007) have found that inhibition of NF-kB significantly 
decreased seizure threshold in treated rats suggesting that 
NF-kB activation is neuroprotective following a variety of 
brain insults and neurodegenerative conditions, supporting 
the proposal that proinflammatory cytokines and the NF-κB 
pathway have a role in the pathogenesis of status epilepticus 
development (Zhang et al. 2018).

As previously commented, SNVs in miRs related to 
epilepsy might affect the levels of proteins associated with 
the disorder. However, most of the studies did not involve 
additional experiments to assess the miRs and its predicted 
targets expression, once obtaining tissue samples of epilep-
togenic foci is difficult. Thus, only (Boschiero et al. 2020) 
have evaluated the miR-146a expression level in the epilep-
togenic tissues, considering the different genotypes for the 
SNV rs2910164. The authors have observed lower miR-146a 
expression in the GC and CC genotypes compared to GG 
genotype. Also, TRAF6 gene expression level was higher in 
GC and CC than in GG genotype.

SNVs in miRs Target Genes

The miR: mRNA pairing consequence is a protein expres-
sion loss, resulting from either decreased transcript lev-
els or translational repression (Winter et al. 2009). Many 
mRNAs contain conserved miR target sites in their 3′-UTR. 
The average size of human highly expressed neuronal genes 
is 1300 nt, whereas for genes specific to non-neuronal tis-
sue it is 700 nt (Lewis et al. 2005; Sood et al. 2006), while 
the efficient miR-binding site consists of 6–8 nt. The com-
position of specific miRs associated with the 3′-UTR of a 
mRNA along with the efficiency of miR pairing to their tar-
get sequences impacts the mRNA’s half-life and influences 
protein levels (Filipowicz et al. 2008; Bartel 2009) Consider-
ing the complexity of miRNA: mRNA pairing, the introduc-
tion of a SNV into a 3′-UTR can introducing or removing 
miR target sequences or changing the binding efficiency. In 
addition, the introduction or removal of miR target sites may 
affect binding to other miR target sequences in the SNV’s 
close proximity, which could have unpredicted effects on 
the mRNA half-life.

There are only 3 studies that have observed SNVs in the 
3′-UTR of miRs target genes in epilepsy (Table 2). One 
study has observed that the SNV rs662702 of miRNA-328 
binding site in the 3′-UTR of paired box protein PAX-6 
(PAX6), which is known to result in increased PAX6 expres-
sion, conferred the increased risk of centrotemporal spikes 
of Rolandic epilepsy (Panjwani et al. 2016).

Also, Li et al. (2016a) have investigated if genetic vari-
ants in 3′-UTR of SCN1A, affecting the miR-mRNA 3′-UTR 
interaction and SCN1A gene repression, potentially asso-
ciated with epilepsy. The authors identified twelve vari-
ants, NM_001202435.1:n.6277A > G, n.6568_6571del, 
n.6761C > T, n.6874A > T, n.6907  T > C, n.6978A > G, 
n.7065_7066insG, n.7282  T > C, n.7338_7344del, 
n.7385 T > A, n.7996 C > T, and n.8212C > T in 3′-UTR of 
SCN1A gene. The authors have observed that the genotype 
distribution of n.7282 T > C was significantly different in 
the male group, being the homozygous variant (CC) and 
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heterozygous (CT) much less frequent in male patients than 
in male controls (Table 2). Other two variants, n.7996C > T 
and n.8212C > T did not significantly distribute genotypes 
differently between cases and controls. In female subset, 
three variants were distributed relatively even in the patient 
and control group, n.7282 T > C, n.7996 C > T, and n.8212 
C > T (Table 2). The genetic variant n.6978 A > G was fully 
deviated (variant GG, 100%) from that of the homozy-
gous genotype (AA). The homozygous variants genotypes 
frequencies of n.6277 A > G, n.6568_6571del, n.6761 
C > T, n.6874 A > T, n.6907  T > C, n.7065_7066insG, 
n.7338_7344del, and n.7385 T > A were quite low, one 
or two cases in some gender group (male group or female 
group).

More recently, (Xiao et al. 2019) have experimentally 
confirmed that SNV rs3208684 A > C in 3′-UTR of BCL2 
like 1 (BCL2L1) impairs the ability of let-7b binding affin-
ity with BCL2L1. Previous study have demonstrated that 
BCL2L1, an anti-apoptotic member of the Bcl-2 family, it 
was found to be overexpressed in human TLE, conferring a 
survival property to neural cells (Henshall et al. 2000). In 
addition, it was reported that let-7b could act as a key regula-
tor in the intrinsic apoptotic pathway by targeting BCL2L1 
(Yan et al. 2017), since it was also verified previously that 
Let-7b is downregulated in TLE (McKiernan et al. 2012).

Using Luciferase report assays, Xiao and colleagues 
(Xiao et al. 2019) have demonstrated that miR-200c targeted 
3′-UTR of the DNA methyltransferase 3 alpha (DNMT3A) 
gene expression and the SNV rs35163679, within the miR-
200c binding site, influenced the ability of miR-200c binding 
affinity with DNMT3A. Previously, it was reported increased 
DNMT3A expression in patients with intractable TLE (Zhu 
et al. 2012). DNMT3A is a member of the DNA methyltrans-
ferase enzyme family, which promotes de novo methylation 
during development and regulate synaptic function in mature 
central nervous system neurons (Feng et al. 2010).

In conclusion, SNVs in the 3′-UTR of miRs target genes 
may be potential molecular pathological mechanisms of 
TLE and therapeutic targets; however, case–control studies 
including different ethnic populations need to be performed 
to confirm the results.

The SNV n.‑411A > G (rs57095329) 
in miR‑146a as a Risk Factor for DRE

As pointed out before, most of the studies were unique 
and the findings need to be reproduced in a larger patients’ 
cohort in different populations. However, after a literature 
review, three similar studies for SNV rs57095329 at miR-
146a was identified in DRE patients (Cui et al. 2015; Li 
et al. 2016b; Boschiero et al. 2020). In this context, we input 
all data for the SNV rs57095329 in a dataset, aiming first 

to compare the results and then, to have a better design to 
identify an association between SNV rs57095329 and DRE. 
Thus, we performed one subgroup data including all Chi-
nese and Brazilian DRE patients versus healthy Chinese and 
Brazilian individuals.

The comparative association of the SNV rs57095329 
in patients with DRE and controls groups are showed in 
Table 3. The percentage of different genotypes individually 
for the evaluated SNV was similar in the two Chinese stud-
ies; however, it was different for Brazilian patients (Boschi-
ero et al. 2020).

Interestingly, after the association between Chinese 
and Brazilian samples, it was observed significantly gen-
otype differences between patient and control groups. 
Thus, increased frequency of AA genotype was observed 
in patients compared to controls [55.98% versus (vs.) 
41.60%, p-value ≤ 0.01] with 1.78 [95% confidential inter-
val (CI) = 1.43–2.22] risk for DRE (Table 3). The A allele 
presented significantly risk for the disease compared to G 
allele (68.37% vs. 61.34%, p-value ≤ 0.01) with an Odds 
ratio (OD) of 1.36 (95%CI = 1.13–1.65).

Our results highlighted that the SNV rs57095329 might 
be correlated with DRE when a larger number of patients 
are evaluated. Thus, we concluded that the main drawback of 
most of studies is the small number of individuals enrolled, 
which lacks sample power. Epilepsy is a multifactorial disor-
der in which genetic susceptibility and environmental factors 
may be implicated; larger cohort from different countries 
including patients with DRE and patients’ drug-responsive-
ness are needed to confirm the possible association of SNV 
rs57095329.

Conclusions

• The most evaluated SNVs associated with DRE risk 
were SNVs n.60G > C (rs2910164) and n.-411A > G 
(rs57095329), both located at miR-146a mature 
sequence and promoter region, respectively.

• MiR-146a has been identified to be involved in the 
upregulation of inflammatory responses in human 
astrocytes in epileptogenesis through NF-κB signal-
ing by targeting TRAF6 gene and miR-155 has been 
reported as inflammatory pathway genes modulator in 
early-onset epilepsy development.

• The CC haplotype (rs987195-rs969885) and the AA gen-
otype at rs4817027 in the MIR155HG/miR-155 tag SNV 
were associated with early-onset epilepsy.

• SNVs rs662702, rs3208684, and rs35163679 at 3′-UTR 
impairs the ability of miR-328, let-7b, and miR-200c 
binding affinity with PAX6, BCL2L1, and DNMT3A tar-
get genes, indicating that SNVs in 3′-UTR of target genes 
may be potential molecular pathological mechanisms of 
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TLE; however, case–control studies including different 
ethnic populations need to be performed.

• SNV rs57095329 might be correlated with DRE when a 
larger number of patients are evaluated. Thus, we con-

cluded that the main drawback of most of studies is the 
small number of individuals enrolled, which lacks sample 
power.

Table 2  Association between single-nucleotide variants (SNVs) in the 3′untranslated region (UTR) of microRNAs (miRs) target genes and epi-
lepsy

SNVs single-nucleotide variants, 3´-UTR  3′untranslated region, vs. versus, OR odds ratio with 95% confidence intervals, US United States of 
America, UK United Kingdom, miRs microRNAS, DNMT3A DNA methyltransferase 3 alpha, PAX6 paired box protein PAX-6, BCL2L1 BCL2 
like 1, SCN1A sodium voltage-gated channel alpha subunit 1

References Population Methods SNVs 3′-UTR 
genes

miRs Putative risk 
alleles

OR (95%IC)

Panjwani et al. 
(2016)

US, Canada, 
Argentina, 
France and the 
UK

Control vs. 
Rolandic epi-
lepsy

rs662702 C > T PAX6 miR-328 CC/CT/TT 
(p = 2.6 × 10−4)

12.29 (3.20–7.22)

Li et al. (2016a) China Control vs. epi-
leptic patients

n.6277A > G SCN1A – – –

n.6568_6571del SCN1A – – –
n.6761C > T SCN1A – – –
n.6874A > T SCN1A – – –
n.6907 T > C SCN1A – – –
n.6978A > G SCN1A – – –
n.7065_7066insG SCN1A – – –
n.7282 T > C SCN1A – TT/CC + CT 

(p < 0.05) 
(Male patient)

TT/CT/TT 
(p > 0.05) 
(Female 
patient)

0.42 (1.61–0.11)
1.50 (0.36–1.17)

n.7338_7344del SCN1A – – –
n.7385 T > A SCN1A – – –
n.7996 C > T SCN1A – CC + CT/TT 

(p > 0.05)
CC/CT/TT 

(p > 0.05) 
(Female 
patient)

0.875 (0.89–0.62)
0.91 (0.86–0.68)

n.8212C > T SCN1A – CC/CT + TT 
(p > 0.05)

CC/CT/TT 
(p > 0.05) 
(Female 
patient)

0.77 (1.12–0.60)
1.03 (0.94–1.01)

Xiao et al. (2019) – Luciferase report 
assay

rs3208684 A > C BCL2L1 let-7b – –

Luciferase report 
assay

rs35163679 DNMT3A miR-200c – –
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Table 3  Comparative association of the single-nucleotide variant n.-411A > G (rs57095329) in miR-146A in patients with drug-resistant epilepsy 
and health control groups

*Fisher’s test
**Chi-square
# Adjusted odds ratio based on age and sex. OR odds ratio, 95%CI 95% confidence interval, NA not applicable
A Boschiero et al. 2020
B Li et al. 2016a, b
C Cui et al. 2015

Genotypes Patients n (%) A Controls n (%) A Odds ratio (95%CI)

Additive (AA vs. 
GA vs. GG)

Dominant 
(GA + GG vs. AA)

Recessive (AA + GA vs. GG)

AA 0 (0.00) 5 (2.14) NA NA Reference
GA 58 (95.08) 221 (94.44) NA NA Reference
GG 3 (4.92) 8 (3.42) NA NA 1.46 (0.242–6.33)
p-value by model 0.597* 0.587* 0.703*

Genotypes Patients n (%) B Controls n (%) B Additive Dominant Recessive

AA 160 (59.93) 152 (56.93) NA 1.13 (0.80–1.60) Reference
GA 89 (33.33) 76 (28.46) NA Reference Reference
GG 18 (6.74)a 39 (14.61) NA Reference 0.42 (0.24–0.76)
p-value by model  ≤ 0.01** 0.482** (0.405#) 0.003** (0.087#)

Genotypes Patients n (%) C Controls n (%) C Additive Dominant Recessive

AA 163 (65.46) 155 (62.25) NA 1.15 (0.80–1.66) Reference
GA 79 (31.73) 86 (34.54) NA Reference Reference
GG 7 (2.81) 8 (3.21) NA Reference 0.87 (0.31–2.44)
p-value by model 0.754** 0.456** 0.793**

Genotypes Patients n (%)—Total Controls n (%)—Total Additive Dominant Recessive

AA 323 (55.98)b 312 (41.60) NA 1.79 (1.43–2.22) Reference
GA 226 (39.17) 383 (51.07) NA Reference Reference
GG 28 (4.85) 55 (7.33) NA Reference 0.65 (0.40–1.03)
p-value by model  ≤ 0.01**  ≤ 0.01** 0.068**

Allele Patients n (%)—Total Controls n (%)—Total Allelic analysis

A 323 (68.37) 695 (61.34) 1.36 (1.13–1.65)
G 254 (31.63) 438 (38.66) Reference
p-value  ≤ 0.01**
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